Electron transfer (ET) is a fundamental process that underlies various phenomena in physics, chemistry, and biology. Understanding ET mechanisms is crucial for developing sustainable energy solutions and synthesizing value-added compounds efficiently. In this context, the present review provides the fundamental aspects of ET involving bioinspired, biomimetics, and biological entities and its significance for sustainable energy and green electrosynthesis fields. Among the theoretical and experimental cornerstones, Marcus Theory, electronic conductance, computational modeling, biomolecular thermodynamics, electrochemical and kinetic theories, protein film voltammetry, and the emergence of in situ and operando techniques are explored. Theoretical modeling is vital for understanding and predicting ET processes. Additionally, the significance of experimental techniques for investigating the ET process in biological entities and interfaces is discussed. Protein film voltammetry is a valuable and consolidated technique for studying ET processes at the protein-electrode interface, whereas in situ and operando techniques for interrogating ET processes in real time provide insights into the dynamics and mechanisms of ET. The concept of quantum conductance in biological structures is addressed, evidencing a trend and power of single-entity analysis. Aspects of extracellular and interfacial ET processes are presented and discussed in the electrochemical energy conversion systems. A deep understanding of these processes can improve the design of efficient bioinspired catalysts. Therefore, this multidisciplinary work aims to fill the gaps between different scientific fields related to ET involving bioentities to develop innovative energy and value-added compound synthesis solutions.