Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Salinity poses a significant environmental challenge, limiting plant growth and development. To cultivate salt-tolerant plants, it is crucial to understand the physiological, biochemical, and molecular responses and adaptations to salt stress, as well as to explore natural genetic resources linked to salt tolerance. In this review, we provide a detailed overview of the mechanisms behind morphological and physiological responses triggered by salt stress, including salt damage to plants, the disturbance of cell osmotic potentials and ion homeostasis, lipid peroxidation, and the suppression of photosynthesis and growth. We also describe the physiological mechanisms that confer salt tolerance in plants, such as osmotic adjustments, reactive oxygen species (ROS) scavenging, photosynthetic responses, phytohormone regulation, and ion regulation. Additionally, we summarize the salt-stress sensing and signaling pathways, gene regulatory networks, as well as salt-tolerance mechanisms in plants. The key pathways involved in salt-stress signal perception and transduction, including Ca2+-dependent protein kinase (CDPK) cascades, the salt overly sensitive (SOS) pathway, and the abscisic acid (ABA) pathway, are discussed, along with relevant salt-stress-responsive genes and transcription factors. In the end, the important issues and challenges related to salt tolerance for future research are addressed. Overall, this review aims to provide essential insights for the future cultivation and breeding of crops and fruits.
Salinity poses a significant environmental challenge, limiting plant growth and development. To cultivate salt-tolerant plants, it is crucial to understand the physiological, biochemical, and molecular responses and adaptations to salt stress, as well as to explore natural genetic resources linked to salt tolerance. In this review, we provide a detailed overview of the mechanisms behind morphological and physiological responses triggered by salt stress, including salt damage to plants, the disturbance of cell osmotic potentials and ion homeostasis, lipid peroxidation, and the suppression of photosynthesis and growth. We also describe the physiological mechanisms that confer salt tolerance in plants, such as osmotic adjustments, reactive oxygen species (ROS) scavenging, photosynthetic responses, phytohormone regulation, and ion regulation. Additionally, we summarize the salt-stress sensing and signaling pathways, gene regulatory networks, as well as salt-tolerance mechanisms in plants. The key pathways involved in salt-stress signal perception and transduction, including Ca2+-dependent protein kinase (CDPK) cascades, the salt overly sensitive (SOS) pathway, and the abscisic acid (ABA) pathway, are discussed, along with relevant salt-stress-responsive genes and transcription factors. In the end, the important issues and challenges related to salt tolerance for future research are addressed. Overall, this review aims to provide essential insights for the future cultivation and breeding of crops and fruits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.