To alleviate traffic congestion, it is necessary to effectively manage traffic bottlenecks. In existing research, travel demand prediction for traffic bottlenecks is based on travel behavior assumptions, and prediction accuracy is low in practice. Thus, the effect of traffic bottleneck management strategies cannot be guaranteed. Management strategies are often mandatory, leading to problems such as unfairness and low social acceptance. To address such issues, this paper proposes managing traffic bottlenecks based on shared travel plans. To solve the information security and privacy problems caused by travel plan sharing and achieve information transparency, travel plans are shared and regulated by blockchain technology. To optimize the operation level of traffic bottlenecks, travel plan regulation models under scenarios where all/some travelers share travel plans are proposed and formulated as linear programming models, and these models are integrated into the blockchain with smart contract technology. Furthermore, travel plan regulation models are tested and verified using traffic flow data from the Su-Tong Yangtze River Highway Bridge, China. The results indicate that the proposed travel plan regulation models are effective for alleviating traffic congestion. The vehicle transfer rate and total delay rate increase as the degree of total demand increases; the vehicle transfer rate increases as the length of the time interval decreases; and the vehicle transfer rate and total delay rate increase as the number of vehicles not sharing their travel plans increases. By using the model and method proposed in this paper, the sustainability of urban economy, society, and environment can be promoted. However, there are many practical situations that have not been considered in this paper, such as multiple entry and exit bottlenecks, multiple travel modes, and other control strategies. In addition, this paper considers only one bottleneck rather than road networks because of the throughput limitations of blockchain technology.