Plant genetic resources are critical for maintaining global biodiversity and ensuring food security. However, these resources face threats from factors such as habitat loss and climate change, with approximately 22% of plant species estimated to be at risk of extinction. To address this issue, both natural and biotechnological methods are being developed to preserve plant genetic resources, with germplasm being a key component. Germplasm contains the complete genetic information of a plant and can be stored for extended periods and replicated as required. The objective of this study is to emphasize the importance of preserving germplasm of endangered or near-extinct plant species through in situ and ex situ conservation methods. In situ conservation involves conserving species in their natural environment, while ex situ conservation includes using gene-seed banks and tissue culture to store genetic resources. These methods are crucial for maintaining genetic diversity and preventing the loss of valuable plant resources. The study highlights the various ex situ conservation methods, including cryopreservation, pollen and DNA banks, farmer's fields, botanic gardens, genetic reserves, and slow-growing cultures, which are essential for preserving germplasm. Gene banks worldwide currently hold over 7.4 million accessions of crop genetic resources, demonstrating the value of germplasm conservation efforts. Additionally, understanding the phenotypic and genetic characterization of related species is crucial for identifying endangered or vulnerable species that can diversify into new varieties or subspecies. In conclusion, prioritizing germplasm conservation efforts is crucial for meeting future demands while preserving endangered or vulnerable species. This will ensure that plant genetic resources remain available for future generations and that agricultural innovation can effectively address global food security challenges.