2021
DOI: 10.1055/s-0041-1726295
|View full text |Cite
|
Sign up to set email alerts
|

Exploring Intramolecular Methyl–Methyl Coupling on a Metal Surface for Edge-Extended Graphene Nanoribbons

Abstract: Intramolecular methyl–methyl coupling on Au (111) is explored as a new on-surface protocol for edge extension in graphene nanoribbons (GNRs). Characterized by high-resolution scanning tunneling microscopy, noncontact atomic force microscopy, and Raman spectroscopy, the methyl–methyl coupling is proven to indeed proceed at the armchair edges of the GNRs, forming six-membered rings with sp3- or sp2-hybridized carbons.

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 44 publications
0
1
0
Order By: Relevance
“…The formation of such NGs is attributed to the oxidative ring closure of the majority of the methyl groups, together with the dissociation of several of them per NG prior to cyclization. Such removal of methyl moieties was previously reported in the synthesis of several NGs [30,37,[42][43][44][45] and GNRs [22,46] and is concomitant to the annealing step at temperatures where the oxidative ring closure is expected to occur on Au(111), therefore being not possible to achieve the synthesis of E.…”
Section: On-surface Synthesis Of Non-benzenoid Nanographenesmentioning
confidence: 85%
“…The formation of such NGs is attributed to the oxidative ring closure of the majority of the methyl groups, together with the dissociation of several of them per NG prior to cyclization. Such removal of methyl moieties was previously reported in the synthesis of several NGs [30,37,[42][43][44][45] and GNRs [22,46] and is concomitant to the annealing step at temperatures where the oxidative ring closure is expected to occur on Au(111), therefore being not possible to achieve the synthesis of E.…”
Section: On-surface Synthesis Of Non-benzenoid Nanographenesmentioning
confidence: 85%