2024
DOI: 10.3389/fnins.2024.1449181
|View full text |Cite
|
Sign up to set email alerts
|

Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks

Alexandre Bittar,
Philip N. Garner

Abstract: Understanding cognitive processes in the brain demands sophisticated models capable of replicating neural dynamics at large scales. We present a physiologically inspired speech recognition architecture, compatible and scalable with deep learning frameworks, and demonstrate that end-to-end gradient descent training leads to the emergence of neural oscillations in the central spiking neural network. Significant cross-frequency couplings, indicative of these oscillations, are measured within and across network la… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 80 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?