Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
<div>In this article, we investigated the effects of material parameters on the clinching joint geometry using finite element model (FEM) simulation and machine learning-based metamodels. The FEM described in this study was first developed to reproduce the shape of clinching joints between two AA5052 aluminum alloy sheets. Neural network metamodels were then used to investigate the relation between material parameters and joint geometry as predicted by FEM. By interpreting the data-driven metamodels using explainable machine learning techniques, the effects of the hard-to-measure material parameters during the clinching are studied. It is demonstrated that the friction between the two metal sheets and the flow stress of the material at high (up to 100%) plastic strain are the most influential factors on the interlock and the neck thickness of the clinching joints. However, their dependence on the material parameters is found to be opposite. First, while the friction between the two metal sheets promotes the formation of the interlock, it reduces the neck thickness and thus increases the risk of breaking in this region. Second, it is easier to form the interlock if the deformed material exhibits small flow stress at high plastic strain, but the neck thickness tends to be thinner in this case. The identified material parameters help to significantly reduce the relative error between the simulated results and the experimental results, not only in the configurations from which they are identified but also in a new configuration. This methodology shows its potential in the cases where material parameters are not available or difficult to measure.</div>
<div>In this article, we investigated the effects of material parameters on the clinching joint geometry using finite element model (FEM) simulation and machine learning-based metamodels. The FEM described in this study was first developed to reproduce the shape of clinching joints between two AA5052 aluminum alloy sheets. Neural network metamodels were then used to investigate the relation between material parameters and joint geometry as predicted by FEM. By interpreting the data-driven metamodels using explainable machine learning techniques, the effects of the hard-to-measure material parameters during the clinching are studied. It is demonstrated that the friction between the two metal sheets and the flow stress of the material at high (up to 100%) plastic strain are the most influential factors on the interlock and the neck thickness of the clinching joints. However, their dependence on the material parameters is found to be opposite. First, while the friction between the two metal sheets promotes the formation of the interlock, it reduces the neck thickness and thus increases the risk of breaking in this region. Second, it is easier to form the interlock if the deformed material exhibits small flow stress at high plastic strain, but the neck thickness tends to be thinner in this case. The identified material parameters help to significantly reduce the relative error between the simulated results and the experimental results, not only in the configurations from which they are identified but also in a new configuration. This methodology shows its potential in the cases where material parameters are not available or difficult to measure.</div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.