2013
DOI: 10.5120/13333-0916
|View full text |Cite
|
Sign up to set email alerts
|

Exploring optimal architecture of Multi-layered Feed- forward (MLFNN) as Bidirectional Associative Memory (BAM) for Function Approximation

Abstract: Function approximation is an instance of supervised learning which is one of the most studied topics in machine learning, artificial neural networks, pattern recognition, and statistical curve fitting. In principle, any of the methods studied in these fields can be used in reinforcement learning. Multi-layered feed-forward neural networks (MLFNN) have been extensively used for the purpose of function approximation. Another class of neural networks, BAM, has also been studied and experimented for pattern mappin… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2019
2019
2020
2020

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 24 publications
0
0
0
Order By: Relevance