Intraspecific variability in ecological traits is widespread in nature. Recent evidence, mostly from aquatic ecosystems, shows individuals differing at the most fundamental level, that of their chemical composition. Age, sex, or body size and condition may be key drivers of intraspecific variability in the body concentrations of carbon (C), nitrogen (N), and phosphorus (P). However, we still have a rudimentary understanding of the patterns and drivers of intraspecific variability in chemical composition of terrestrial consumers, particularly vertebrates.
Here, we investigate the elemental composition of the snowshoe hare Lepus americanus. Based on snowshoe hare ecology, we predicted older, larger individuals to have higher concentration of N or P and lower C content compared with younger, smaller individuals. We also predicted females to have higher concentrations of N, P, and lower C than males due to the higher reproductive costs they incur. Finally, we predicted that individuals in better body condition would have higher N and P than those in worse condition, irrespective of age.
We obtained C, N, and P concentrations and ratios from a sample of 50 snowshoe hares. We then used general linear models to test our predictions on the relationship between age, sex, body size or condition and stoichiometric variability in hares.
We found considerable variation in C, N, and P stoichiometry within our sample. Contrary to our predictions, we found weak evidence of N content decreasing with age. As well, sex appeared to have no relationship with hare body elemental composition. Conversely, as expected, P content increased with body size and condition. Finally, we found no relationship between variability in C content and any of our predictor variables.
Snowshoe hare stoichiometry does not appear to vary with individual age, sex, body size, or condition. However, the weak relationship between body N concentration and age may suggest varying nutritional requirements of individuals at different ages. Conversely, body P's weak relationship to body size and condition appears in line with this limiting element's importance in terrestrial ecosystems. Snowshoe hares are keystone herbivores in the boreal forest of North America, and the substantial stoichiometric variability we find in our sample could have important implications for nutrient dynamics, in both boreal and adjacent ecosystems.