is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible. Abstract. Currently, organizations tend to reuse their past knowledge to make good decisions quickly and effectively and thus, to improve their business processes performance in terms of time, quality, efficiency, etc. Process mining techniques allow organizations to achieve this objective through process discovery. This paper develops a semi-automated approach that supports decision making by discovering decision rules from the past process executions. It identifies a ranking of the process patterns that satisfy the discovered decision rules and which are the most likely to be executed by a given user in a given context. The approach is applied on a supervision process of the gas network exploitation.