Exploring prognostic biomarkers in pathological images of colorectal cancer patients via deep learning
Binshen Wei,
Linqing Li,
Yenan Feng
et al.
Abstract:Hematoxylin and eosin (H&E) whole slide images provide valuable information for predicting prognostic outcomes in colorectal cancer (CRC) patients. However, extracting prognostic indicators from pathological images is challenging due to the subtle complexities of phenotypic information. We trained a weakly supervised deep learning model on data from 640 CRC patients in the prostate, lung, colorectal, and ovarian (PLCO) cancer screening trial dataset and validated it using data from 522 CRC patients in the … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.