Influenced by climate change, significant alterations in vegetation phenology have been observed globally. Grassland phenology is highly sensitive to climate change. However, research on the variations in grassland phenology and its responses to seasonal climatic changes in arid and semi-arid regions remains scarce. This study, utilizing Solar-Induced Chlorophyll Fluorescence (SIF) data, meteorological station data, and grassland type data, employs trend analysis and time series analysis to explore the trends of seasonal climatic variability and the sensitivity response of grassland phenology in Xinjiang to seasonal climates. The findings reveal the following: (1) The region experiences more pronounced warming in winter and spring than in summer and autumn, with ground temperature increments outpacing those of air temperatures. The summer season registers the peak in precipitation volume and rate of increase, where mountainous zones accrue more rainfall compared to basins and plains. The distribution of sunshine duration is characterized by higher values in eastern areas than in the west and more in the plains than in mountainous regions, potentially due to escalating cloudiness, which has contributed to a diminishing trend in sunshine hours across Xinjiang over the past 20 years. (2) Over the past two decades, the perennial greening phase of Xinjiang grasslands has predominantly occurred in early May, showing an overall trend of occurring earlier by approximately 5.47 days per decade, while the yellowing phase mainly occurs at the end of September and the beginning of October, demonstrating a delaying trend (6.61 days/decade). The average length of the growing season is 145 days, generally showing a slightly increasing trend (11.97 days/decade). (3) In spring, the rise in air and ground temperatures, along with increased sunshine duration, all promote grassland growth, leading to an earlier greening phase. Conversely, in autumn, increases in air temperature, ground temperature, and sunshine duration can inhibit grassland growth, resulting in an earlier yellowing phase. Increased precipitation in summer and autumn can delay the yellowing phase and extend the length of the grassland growing season. This research provides new insights into the factors influencing large-scale grassland phenology and offers references for grassland adaptation to future climate changes.