The mammalian suprachiasmatic nucleus (SCN) forms not only the master circadian clock but also a seasonal clock. This neural network of ∼10,000 circadian oscillators encodes season-dependent day-length changes through a largely unknown mechanism. We show that region-intrinsic changes in the SCN fine-tune the degree of network synchrony and reorganize the phase relationship among circadian oscillators to represent day length. We measure oscillations of the clock gene Bmal1, at single-cell and regional levels in cultured SCN explanted from animals raised under short or long days. Coupling estimation using the Kuramoto framework reveals that the network has couplings that can be both phase-attractive (synchronizing) and -repulsive (desynchronizing). The phase gap between the dorsal and ventral regions increases and the overall period of the SCN shortens with longer day length. We find that one of the underlying physiological mechanisms is the modulation of the intracellular chloride concentration, which can adjust the strength and polarity of the ionotropic GABA A -mediated synaptic input. We show that increasing daylength changes the pattern of chloride transporter expression, yielding more excitatory GABA synaptic input, and that blocking GABA A signaling or the chloride transporter disrupts the unique phase and period organization induced by the day length. We test the consequences of this tunable GABA coupling in the context of excitation-inhibition balance through detailed realistic modeling. These results indicate that the network encoding of seasonal time is controlled by modulation of intracellular chloride, which determines the phase relationship among and period difference between the dorsal and ventral SCN.day-length encoding | repulsive coupling | SCN | GABA | chloride T he physiological and behavioral rhythms of all life on earth are bound to the Earth's rotational cycle of ∼24 h. This fundamental rhythm is also affected by the planet's slanted rotational axis, which causes seasonal variations in the length of the day. How life has adapted to anticipate this yearly rhythm is still debated.The suprachiasmatic nucleus (SCN), the central circadian (∼24 h) pacemaker in mammals, consists of ∼10,000 "clock" neurons. These single-cell clocks maintain endogenous rhythms by autoregulatory feedback loops of genes including period (Per) and brain and muscle Arnt-like 1 (Bmal1) (1). Although it was speculated that seasonal rhythms might be encoded in a single cell (2), single-cell oscillations remain similar regardless of the seasonal time that the SCN tissue encodes (3). Seasonal timing is thus proposed to be encoded in the network of the SCN (4-7) through spatial reorganization of the relative phases of clocks within individual cells (8-10). Subsets of SCN clocks form phase clusters (11) that map approximately to dorsal (shell, D-SCN) and ventral (core, V-SCN) regions of the SCN. When measured through a luciferase reporter monitoring oscillations in the Bmal1 gene, the D-SCN and V-SCN clusters show a phase gap, ...