Developing machine learning models with high generalization capability for predicting chemical reaction yields is of significant interest and importance. The efficacy of such models depends heavily on the representation of chemical reactions, which has commonly been learned from SMILES or graphs of molecules using deep neural networks. However, the progression of chemical reactions is inherently determined by the molecular 3D geometric properties, which have been recently highlighted as crucial features in accurately predicting molecular properties and chemical reactions. Additionally, large-scale pre-training has been shown to be essential in enhancing the generalization capability of complex deep learning models. Based on these considerations, we propose the Reaction Multi-View Pre-training (ReaMVP) framework, which leverages self-supervised learning techniques and a two-stage pre-training strategy to predict chemical reaction yields. By incorporating multi-view learning with 3D geometric information, ReaMVP achieves state-of-the-art performance on two benchmark datasets. Notably, the experimental results indicate that ReaMVP has a significant advantage in predicting out-of-sample data, suggesting an enhanced generalization ability to predict new reactions. Scientific Contribution: This study presents the ReaMVP framework, which improves the generalization capability of machine learning models for predicting chemical reaction yields. By integrating sequential and geometric views and leveraging self-supervised learning techniques with a two-stage pre-training strategy, ReaMVP achieves state-of-the-art performance on benchmark datasets. The framework demonstrates superior predictive ability for out-of-sample data and enhances the prediction of new reactions.