2023
DOI: 10.48550/arxiv.2303.10557
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Exploring TeV candidates of Fermi blazars through machine learning

Abstract: In this work, we make use of a supervised machine learning algorithm based on Logistic Regression (LR) to select TeV blazar candidates from the 4FGL-DR2 / 4LAC-DR2, 3FHL, 3HSP, and 2BIGB catalogs. LR constructs a hyperplane based on a selection of optimal parameters, named features, and hyper-parameters whose values control the learning process and determine the values of features that a learning algorithm ends up learning, to discriminate TeV blazars from non-TeV blazars. In addition, it gives the probability… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 80 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?