Amyloid beta-peptide (Aβ) is the key to developing Alzheimer's disease. Experiments have confirmed that different acidity influences directly not only the structural morphology and population of Aβ oligomers, but also the toxicity. The atomic-level association between the pH, charged residues, and Aβ properties remains obscure. Herein, conformational changes of Aβ monomer, fibril-like trimer, and pentamer in the medium pH range of 4.0-7.5 are studied. The results reveal that, as the pH changes from 7.5 to the isoelectric pH, His6, His13, and His14 are protonated in turn, successively approach the center of mass of folded Aβ monomer, trigger ionic interactions and changes of neighboring turns (Asp7-Ser8, His14-Lys16) and even a distant one (Leu34-Met35), as well as concomitant changes of secondary structure, and promote the conformation transition from unfolded to folded. This observation discloses that protonation can convert these charged residues from originally hydrophilic to "hydrophobic-like". For fibril-like oligomers, the pH susceptibility essentially stems from the pK values of charged residues in the context of the Aβ fibril, and in turn one can predict the dynamic behavior of these residues in the processes of dissociation or stabilization of a fibril by comparing the pK values of residues involved in salt bridges in the normal state with those in the current context. This idea is justified by two fibril models and appears to be applicable to other peptides and their fibril systems.