Nowadays it has become particularly valuable to control the Particulate Matter (PM) emissions from the road transport sector, especially in vehicle powertrains with an Internal Combustion Engine (ICE). However, almost no publication has focused on a comparison of the microscopic characteristics of gasoline and ethanol spray under injection pressure conditions of more than 30 MPa, except in the impingement process. By using a Phase Doppler Particles Analyser (PDPA) system, the microscopic characteristics of gasoline and ethanol spray from a Gasoline Direct Injection (GDI) injector under injection pressure (PI) up to 50 MPa was fully explored in this research. The experimental results demonstrate that under the same PI, the second peak of the probability (pd) curves of droplet normal velocity for gasoline is slightly higher than that of ethanol. Moreover, gasoline spray exceeds ethanol by about 5.4% regarding the average droplet tangential velocity at 50 mm of jet downstream. Compared to ethanol, the pd curve’s peak of droplet diameter at (0, 50) for gasoline is 1.3 percentage points higher on average, and the overall Sauter mean diameter of gasoline spray is slightly smaller. By increasing PI from 10 MPa to 50 MPa, pd of the regions of “100 ≤ Weber number (We) < 1000” and “We ≥ 1000” increases by about 23%, and the pd of large droplets over 20 μm shows a significant reduction. This research would provide novel insights into the deeper understanding of the comparison between gasoline and ethanol spray in microscopic characteristics under ultra-high PI. Additionally, this research would help provide a theoretical framework and practical strategies to reduce PM emissions from passenger vehicles, which would significantly contribute to the protection and sustainability of the environment.