Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Some essential information on gut bacterial profiles and their unique contributions to food digestion in wood-feeding termites (WFT) and soil-feeding termites (SFT) is still inadequate. The feeding type of termites is hypothesized to influence their gut bacterial composition and its functionality in degrading lignocellulose or other organic chemicals. This could potentially provide alternative approaches for the degradation of some recalcitrant environmental chemicals. Therefore, metagenomic analysis can be employed to examine the composition and functional profiles of gut bacterial symbionts in WFT and SFT. Based on the metagenomic analysis of the 16S rRNA gene sequences of gut bacterial symbionts in the WFT, Microcerotermes sp., and the SFT, Pericapritermes nitobei, the findings revealed a total of 26 major bacterial phyla, with 18 phyla commonly represented in both termites, albeit in varying abundances. Spirochaetes dominated the bacterial symbionts in Microcerotermes sp. at 55%, followed by Fibrobacters, while Firmicutes dominated the gut bacteria symbionts in P. nitobei at 95%, with Actinobacteria coming in second at 2%. Furthermore, the Shannon and phylogenetic tree diversity indices, as well as the observed operational taxonomic units and Chao 1 richness indices, were all found to be higher in the WFT than in the SFT deduced from the alpha diversity analysis. Based on the principal coordinate analysis, exhibited a significant distance dissimilarity between the gut bacterial symbionts. The results showed that the gut bacterial composition differed significantly between the WFT and SFT. Furthermore, Tax4Fun analysis evaluated bacterial functions, revealing the predominance of carbohydrate metabolism, followed by amino acid metabolism and energy metabolism in both Microcerotermes sp. and P. nitobei termites. The results implicated that bacterial symbionts inhabiting the guts of both termites were actively involved in the degradation of lignocellulose and other recalcitrant compounds.
Some essential information on gut bacterial profiles and their unique contributions to food digestion in wood-feeding termites (WFT) and soil-feeding termites (SFT) is still inadequate. The feeding type of termites is hypothesized to influence their gut bacterial composition and its functionality in degrading lignocellulose or other organic chemicals. This could potentially provide alternative approaches for the degradation of some recalcitrant environmental chemicals. Therefore, metagenomic analysis can be employed to examine the composition and functional profiles of gut bacterial symbionts in WFT and SFT. Based on the metagenomic analysis of the 16S rRNA gene sequences of gut bacterial symbionts in the WFT, Microcerotermes sp., and the SFT, Pericapritermes nitobei, the findings revealed a total of 26 major bacterial phyla, with 18 phyla commonly represented in both termites, albeit in varying abundances. Spirochaetes dominated the bacterial symbionts in Microcerotermes sp. at 55%, followed by Fibrobacters, while Firmicutes dominated the gut bacteria symbionts in P. nitobei at 95%, with Actinobacteria coming in second at 2%. Furthermore, the Shannon and phylogenetic tree diversity indices, as well as the observed operational taxonomic units and Chao 1 richness indices, were all found to be higher in the WFT than in the SFT deduced from the alpha diversity analysis. Based on the principal coordinate analysis, exhibited a significant distance dissimilarity between the gut bacterial symbionts. The results showed that the gut bacterial composition differed significantly between the WFT and SFT. Furthermore, Tax4Fun analysis evaluated bacterial functions, revealing the predominance of carbohydrate metabolism, followed by amino acid metabolism and energy metabolism in both Microcerotermes sp. and P. nitobei termites. The results implicated that bacterial symbionts inhabiting the guts of both termites were actively involved in the degradation of lignocellulose and other recalcitrant compounds.
Lignocellulosic biomass (LCB) in the form of agricultural, forestry, and agro-industrial wastes is globally generated in large volumes every year. The chemical components of LCB render them a substrate valuable for biofuel production. It is hard to dissolve LCB resources for biofuel production because the lignin, cellulose, and hemicellulose parts stick together rigidly. This makes the structure complex, hierarchical, and resistant. Owing to these restrictions, the junk production of LCB waste has recently become a significant worldwide environmental problem resulting from inefficient disposal techniques and increased persistence. In addition, burning LCB waste, such as paddy straws, is a widespread practice that causes considerable air pollution and endangers the environment and human existence. Besides environmental pollution from LCB waste, increasing industrialization has resulted in the production of billions of tons of dyeing wastewater from several industries, including textiles, pharmaceuticals, tanneries, and food processing units. The massive use of synthetic dyes in various industries can be detrimental to the environment due to the recalcitrant aromatic structure of synthetic dyes, similar to the polymeric phenol lignin in LCB structure, and their persistent color. Synthetic dyes have been described as possessing carcinogenic and toxic properties that could be harmful to public health. Environmental pollution emanating from LCB wastes and dyeing wastewater is of great concern and should be carefully handled to mitigate its catastrophic effects. An effective strategy to curtail these problems is to learn from analogous systems in nature, such as termites, where woody lignocellulose is digested by wood-feeding termites and humus-recalcitrant aromatic compounds are decomposed by soil-feeding termites. The termite gut system acts as a unique bioresource consisting of distinct bacterial species valued for the processing of lignocellulosic materials and the degradation of synthetic dyes, which can be integrated into modern biorefineries for processing LCB waste and bioremediation applications for the treatment of dyeing wastewaters to help resolve environmental issues arising from LCB waste and dyeing wastewaters. This review paper provides a new strategy for efficient management of recalcitrant pollutants by exploring the potential application of termite gut bacteria in biorefinery and bioremediation processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.