Cymbidium goeringii Rchb.f. is an important ornamental plant with a striking well-differentiated lip. Its complex floral architecture presents an exciting opportunity to examine perianth development. In flowering plants, class A, B and E floral homeotic genes play key roles in the specification of perianth identity. In this study, we used a cDNA library of wild-type C. goeringii flower buds for transcriptome sequencing. Eighteen candidate class A, B and E genes (including AP1/FUL-, AP2-, DEF-, GLO-, SEP- and AGL6-like genes) were identified. Quantitative real time polymerase chain reaction (qRT-PCR) results showed that CgDEF1, CgSEP2 and CgAGL6-1 were strongly detected only in the sepals and petals and were significantly downregulated in the lips. CgDEF3, CgDEF4 and CgAGL6-3 were highly expressed in the lips and lip-like petals but were only minimally detected in the sepals. Yeast two-hybrid analysis indicated that CgDEF1 and CgGLO formed a heterodimer. CgAGL6-1/CgSEP2 and CgDEF1 formed higher-order protein complexes with the assistance of the CgGLO protein, and both CgAGL6-1 and CgSEP2 formed a heterodimer. CgDEF3/CgDEF4 could interact independently with CgGLO and CgAGL6-3, respectively, while CgDEF3 and CgDEF4 also formed heterodimers with the assistance of the CgGLO. Based on a comprehensive analysis relating these gene expression patterns to protein interaction profiles, the mechanism of sepal/petal/lip determination was studied in C. goeringii. Furthermore, a hypothesis explaining the sepal/petal/lip determination of C. goeringii is proposed. The lip-quartet (CgDEF3/CgDEF4/CgAGL6-3/CgGLO) promoted lip formation, whereas the sepal/petal-quartet (CgDEF1/CgAGL6-1/CgSEP2/CgGLO) promoted sepal/petal formation. These results enrich the current knowledge regarding the mechanism and pathways of perianth formation in orchids.