Acoustic variation is central to the study of speaker characterization. In this respect, specific phonemic classes such as vowels have been particularly studied, compared to fricatives. Fricatives exhibit important aperiodic energy, which can extend over a high-frequency range beyond that conventionally considered in phonetic analyses, often limited up to 12 kHz. We adopt here an extended frequency range up to 20.05 kHz to study a corpus of 15 812 fricatives produced by 59 speakers in Russian, a language offering a rich inventory of fricatives. We extracted two sets of parameters: the first is composed of 11 parameters derived from the frequency spectrum and duration (acoustic set) while the second is composed of 13 mel frequency cepstral coefficients (MFCCs). As a first step, we implemented machine learning methods to evaluate the potential of each set to predict gender and speaker identity. We show that gender can be predicted with a good performance by the acoustic set and even more so by MFCCs (accuracy of 0.72 and 0.88, respectively). MFCCs also predict individuals to some extent (accuracy = 0.64) unlike the acoustic set. In a second step, we provide a detailed analysis of the observed intra- and inter-speaker acoustic variation.