Gaining a fundamental insight into the biomolecular recognition of posttranslationally modified histones by epigenetic reader proteins is of crucial importance to understanding the regulation of the activity of human genes. Here, we seek to establish whether trimethylthialysine, a simple trimethyllysine analogue generated through cysteine alkylation, is a good trimethyllysine mimic for studies on molecular recognition by reader proteins. Histone peptides bearing trimethylthialysine and trimethyllysine were examined for binding with five human reader proteins employing a combination of thermodynamic analyses, molecular dynamics simulations and quantum chemical analyses. Collectively, our experimental and computational findings reveal that trimethylthialysine and trimethyllysine exhibit very similar binding characteristics for the association with human reader proteins, thereby justifying the use of trimethylthialysine for studies aimed at dissecting the origin of biomolecular recognition in epigenetic processes that play important roles in human health and disease.The highest mark, trimethyllysine, is recognized by the aromatic cage-containing readers, including tandem tudor domains (TTD), chromodomains (CD) and the plant homeodomain (PHD) zinc finger proteins ( Figure 1B) [6]. To gain a better understanding of the exact role of lysine methylation in epigenetics, it is important to develop novel chemical tools for studying the molecular mechanisms that govern the molecular recognition of methylated lysines by reader proteins. An installation of chemically modified methylated lysine analogues into histone proteins [7] and histone peptides [8][9][10][11] has been a valuable method to study how changes in structure affect the association with reader proteins. In addition, a variety of methods have been developed to incorporate unnatural amino acids in both histone proteins and peptides, notably by auxotrophic expression systems [12] or employing the amber stop codon (TAG) [13]. Major drawbacks of both methods include severe limitations of amino acid variants that can be incorporated into histones. Furthermore, when using auxotrophic strains, the protein expression yield is decreased dramatically, and the process of developing an amber codon pair is time consuming and laborious [14,15].