In this study, we innovatively proposed a facile method to synthesize ultrafine porous copper (Cu) powders under mild conditions by utilizing the reduction properties of reduced iron (Fe) powders. The results showed that Cu2+ was easily reduced to Cu at 1.05–1.1 times the theoretical iron powder content for a reaction time of 10~20 min at 20~25 °C. The obtained Cu powders with an average diameter of 10.2 μm did not show significant differences in crystal structure and purity compared to the commercial Cu powders with an average diameter of 6.6 μm, but the prepared Cu powders showed a loose and porous structure, which demonstrates their higher potential in catalyzing energetic materials. The ultrafine porous Cu powder resulted in a significant decrease in the high decomposition temperature of ammonium perchlorate (AP) from 441.3 °C to 364.2 °C at only 1% of the dosage, and also slightly advanced its low decomposition temperature, which confirmed its remarkable catalytic activity in the field of energetic materials. These meaningful results will provide a new method for the preparation of Cu powders and promote the development of the chemical reduction method for the preparation of ultrafine porous Cu powders, which is expected to promote the application of ultrafine porous Cu powders in the field of energetic materials catalysis.