2022
DOI: 10.48550/arxiv.2203.16676
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Exploring the hysteresis properties of nanocrystalline permanent magnets using deep learning

Abstract: We demonstrate the use of model order reduction and neural networks for estimating the hysteresis properties of nanocrystalline permanent magnets from microstructure. With a data-driven approach, we learn the demagnetization curve from data-sets created by grain growth and micromagnetic simulations. We show that the granular structure of a magnet can be encoded within a low-dimensional latent space. Latent codes are constructed using a variational autoencoder. The mapping of structure code to hysteresis proper… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 30 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?