Biomarker analysis by mass spectrometry
(MS) can allow for the
rapid quantification of low abundant biomarkers. However, the complexity
of human serum is a limiting factor in MS-based bioanalysis; therefore,
novel biomarker enrichment strategies are of interest, particularly
if the enrichment strategies are of low cost and are easy to use.
One such strategy involves the use of molecularly imprinted polymers
(MIPs) as synthetic receptors for biomarker enrichment. In the present
study, a magnetic solid-phase extraction (mSPE) platform, based on
magnetic MIP (mMIP) sorbents, is disclosed, for use in the MS-based
quantification of proteins by the bottom-up approach. Progastrin releasing
peptide (ProGRP), a low abundant and clinically sensitive biomarker
for small cell lung cancer (SCLC), was used to exemplify the mSPE
platform. Four different mMIPs were synthesized, and an mSPE method
was developed and optimized for the extraction of low concentrations
of tryptic peptides from human serum. The mSPE method enabled the
selective extraction of the ProGRP signature peptide, the nonapeptide
NLLGLIEAK, prior to quantification of the target via LC-MS/MS. Overall,
the mSPE method demonstrated its potential as a low cost, rapid, and
straightforward sample preparation method, with demonstrably strong
binding, acceptable recoveries, and good compatibility with MS. mMIPs
are a potential low-cost alternative to current clinical methods for
biomarker analysis.