2015
DOI: 10.1007/s11116-015-9594-1
|View full text |Cite
|
Sign up to set email alerts
|

Exploring the potential of phone call data to characterize the relationship between social network and travel behavior

Abstract: Social network contacts have significant influence on individual travel behavior. However, transport models rarely consider social interaction. One of the reasons is the difficulty to properly model social influence based on the limited data available. Nonconventional, passively collected data sources, such as Twitter, Facebook or mobile phones, provide large amounts of data containing both social interaction and spatiotemporal information. The analysis of such data opens an opportunity to better understand th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
20
0
5

Year Published

2016
2016
2021
2021

Publication Types

Select...
4
3
1

Relationship

0
8

Authors

Journals

citations
Cited by 44 publications
(25 citation statements)
references
References 49 publications
0
20
0
5
Order By: Relevance
“…Incluso es posible identificar la convergencia espacio-temporal de individuos con datos de telefonía móvil: cuando dos personas que intercambian llamadas telefónicas se encuentran al mismo tiempo en el mismo lugar se puede asumir que se han encontrado (Picornell, 2015). Los resultados se pueden obtener de forma mucho más rápida y con menor coste que si se realizan encuestas, si bien la información obtenida es menos rica y la localización de los orígenes y destinos resulta no demasiado precisa (basada simplemente en polígonos de Voronoi en torno a las antenas de telefonía).…”
Section: Análisis De Movilidadunclassified
“…Incluso es posible identificar la convergencia espacio-temporal de individuos con datos de telefonía móvil: cuando dos personas que intercambian llamadas telefónicas se encuentran al mismo tiempo en el mismo lugar se puede asumir que se han encontrado (Picornell, 2015). Los resultados se pueden obtener de forma mucho más rápida y con menor coste que si se realizan encuestas, si bien la información obtenida es menos rica y la localización de los orígenes y destinos resulta no demasiado precisa (basada simplemente en polígonos de Voronoi en torno a las antenas de telefonía).…”
Section: Análisis De Movilidadunclassified
“…These decisions are also influenced by level of comfort, attitudinal traits, daytime, household (family) arrangements or neighborhood properties. In addition, it is likely that with a growing amount of substantially more complex data sets collected by emerging techniques and technologies (Axhausen 2008;Hasan et al 2013;MacFarlane 2014;Wu et al 2014;Soora 2014;Picornell et al 2015;Huang and Wong 2016) and with demand for deeper insights from these novel data resources, the role of outliers becomes critical. With it the need for robust techniques becomes even greater.…”
Section: Transportationmentioning
confidence: 99%
“…On the other hand, they have some limitations: lack of accompanying context in the data; informal nature of textual content; scarce location related information; need of periodic monitoring and enhancement of the system. Characteristics of social network Big Data can also be inferred from wi-fi connections (Sapiezynski et al, 2015), and cell phones traces like Call Detail Records (CDR): Eagle et al (2009), Zhang andDantu (2010), Calabrese et al (2011), Cho et al (2011), Phithakkitnukoon et al (2012, Chen and Mei (2014), Toole et al (2015), Picornell et al (2015).…”
Section: Social Network Big Datamentioning
confidence: 99%
“…Additionally, Call Detail Records (CDR) are being used to extract information to infer characteristics of trips and activities and of social networks interactions (González et al, 2008;Picornell et al, 2015, Toole, 2015.…”
Section: Data Collection From Mobile Phonesmentioning
confidence: 99%