Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Artificial neural networks (ANN), machine learning (ML), deep learning (DL), and ensemble learning (EL) are four outstanding approaches that enable algorithms to extract information from data and make predictions or decisions autonomously without the need for direct instructions. ANN, ML, DL, and EL models have found extensive application in predicting geotechnical and geoenvironmental parameters. This research aims to provide a comprehensive assessment of the applications of ANN, ML, DL, and EL in addressing forecasting within the field related to geotechnical engineering, including soil mechanics, foundation engineering, rock mechanics, environmental geotechnics, and transportation geotechnics. Previous studies have not collectively examined all four algorithms—ANN, ML, DL, and EL—and have not explored their advantages and disadvantages in the field of geotechnical engineering. This research aims to categorize and address this gap in the existing literature systematically. An extensive dataset of relevant research studies was gathered from the Web of Science and subjected to an analysis based on their approach, primary focus and objectives, year of publication, geographical distribution, and results. Additionally, this study included a co-occurrence keyword analysis that covered ANN, ML, DL, and EL techniques, systematic reviews, geotechnical engineering, and review articles that the data, sourced from the Scopus database through the Elsevier Journal, were then visualized using VOS Viewer for further examination. The results demonstrated that ANN is widely utilized despite the proven potential of ML, DL, and EL methods in geotechnical engineering due to the need for real-world laboratory data that civil and geotechnical engineers often encounter. However, when it comes to predicting behavior in geotechnical scenarios, EL techniques outperform all three other methods. Additionally, the techniques discussed here assist geotechnical engineering in understanding the benefits and disadvantages of ANN, ML, DL, and EL within the geo techniques area. This understanding enables geotechnical practitioners to select the most suitable techniques for creating a certainty and resilient ecosystem.
Artificial neural networks (ANN), machine learning (ML), deep learning (DL), and ensemble learning (EL) are four outstanding approaches that enable algorithms to extract information from data and make predictions or decisions autonomously without the need for direct instructions. ANN, ML, DL, and EL models have found extensive application in predicting geotechnical and geoenvironmental parameters. This research aims to provide a comprehensive assessment of the applications of ANN, ML, DL, and EL in addressing forecasting within the field related to geotechnical engineering, including soil mechanics, foundation engineering, rock mechanics, environmental geotechnics, and transportation geotechnics. Previous studies have not collectively examined all four algorithms—ANN, ML, DL, and EL—and have not explored their advantages and disadvantages in the field of geotechnical engineering. This research aims to categorize and address this gap in the existing literature systematically. An extensive dataset of relevant research studies was gathered from the Web of Science and subjected to an analysis based on their approach, primary focus and objectives, year of publication, geographical distribution, and results. Additionally, this study included a co-occurrence keyword analysis that covered ANN, ML, DL, and EL techniques, systematic reviews, geotechnical engineering, and review articles that the data, sourced from the Scopus database through the Elsevier Journal, were then visualized using VOS Viewer for further examination. The results demonstrated that ANN is widely utilized despite the proven potential of ML, DL, and EL methods in geotechnical engineering due to the need for real-world laboratory data that civil and geotechnical engineers often encounter. However, when it comes to predicting behavior in geotechnical scenarios, EL techniques outperform all three other methods. Additionally, the techniques discussed here assist geotechnical engineering in understanding the benefits and disadvantages of ANN, ML, DL, and EL within the geo techniques area. This understanding enables geotechnical practitioners to select the most suitable techniques for creating a certainty and resilient ecosystem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.