This work explored how immersive technologies like virtual reality can be exploited for improved motor learning. While virtual reality is becoming a practical replacement for training that is otherwise expensive, dangerous, or inconvenient to deliver, virtual simulations can also enhance the learning process. Based on the concept of ‘attention computing’, we developed and tested a novel ‘gaze-adaptive’ training method within a virtual putting environment augmented with eye and motion tracking. Novice golfers were randomly assigned to either standard putting practice in virtual reality (control) or gaze-adaptive training conditions. For gaze-adaptive training, the golf ball was sensitive to the participant’s gaze and illuminated when fixated upon, to prompt longer and more stable pre-shot fixations. We recorded the effect of these training conditions on task performance, gaze control, and putting kinematics. Gaze-adaptive training was successful in generating more expert-like gaze control and putting kinematics, although this did not transfer to improved performance outcomes within the abbreviated training paradigm. These findings suggest that gaze-adaptive environments can enhance visuomotor learning and may be a promising method for augmenting virtual training environments.