Coffee silverskin (CS), a by-product of the coffee roasting process, has high protein content (16.2−19.0%, w/w), making it a potential source for plant protein and bioactive peptide production. This study aims to develop innovative extraction methods for phenolic compounds and proteins from CS. The conditions for hydrothermal (HT) extraction of phenolic compounds from CS were optimized by varying CS loading (2.5−10%, w/v), temperature (110−130 °C), and time (5−30 min) using a one-factor-at-a-time (OFAT) approach. The highest TPC of 55.59 ± 0.12 µmole GAE/g CS was achieved at 5.0% (w/v) CS loading and autoclaving at 125 °C for 25 min. Following hydrothermal extraction, CS protein was extracted from HT-extracted solid fraction by microwave-assisted alkaline extraction (MAE) using 0.2 M NaOH at 90 W for 2 min, resulting in a protein recovery of 12.19 ± 0.39 mg/g CS. The CS protein was then subjected to enzymatic hydrolysis using protease from Bacillus halodurans SE5 (protease_SE5). Protease_SE5-derived CS protein hydrolysate had a peptide concentration of 0.73 ± 0.09 mg/mL, with ABTS, DPPH, and FRAP values of 15.71 ± 0.10, 16.63 ± 0.061, and 6.48 ± 0.01 µmole TE/mL, respectively. Peptide identification by LC-MS/MS revealed several promising biological activities without toxicity or allergenicity concerns. This study’s integrated approach offers a sustainable and efficient method for extracting valuable compounds from CS, with potential applications in the food and pharmaceutical industries.