Degumming is a critical process in the purification of natural fibers, essential for enhancing their quality and usability across various applications. Traditional degumming methods employed for natural fibers encounter inherent limitations, encompassing prolonged procedures, excessive energy consumption, adverse environmental impact, and subpar efficiency. To address these challenges, a groundbreaking wave of degumming technique has emerged, transcending these constraints and heralding a new era of efficiency, sustainability, and eco-friendly techniques. This study represents the Firmiana simplex bark (FSB) fiber’s delignification by using deep eutectic solvents (DESs). The study explores the application of deep eutectic solvents, by synthesizing different types of DES using a hydrogen bond acceptor (HBA) and four representative hydrogen bond donors (HBDs) for FSB fiber degumming. This study investigates the morphologies, chemical compositions, crystallinities, and physical properties of Firmiana simplex bark fibers before and after the treatment. Furthermore, the effects and mechanisms of different DESs on dispersing FSB fibers were examined. The experimental results showed that choline chloride-urea (CU)-based DES initiates the degumming process by effectively disrupting the hydrogen bond interaction within FSB fibers, primarily by outcompeting chloride ions. Following this initial step, the DES acts by deprotonating phenolic hydroxyl groups and cleaving β-O-4 bonds present in diverse lignin units, thereby facilitating the efficient removal of lignin from the fibers. This innovative approach resulted in significantly higher degumming efficiency and ecofriendly as compared to traditional methods. Additionally, the results revealed that CU-based DES exhibits the utmost effectiveness in degumming FSB fibers. The optimal degumming conditions involve a precise processing temperature of 160 °C and a carefully controlled reaction time of 2 h yielding the most favorable outcomes. The present study presents a novel straightforward and environmentally friendly degumming method for Firmiana simplex bark, offering a substantial potential for enhancing the overall quality and usability of the resulting fibers. Our findings open new pathways for sustainable fiber-processing technologies.