Complex systems are inherent to modern society, in which individuals, organizations, and computational elements relate with each other to achieve a predefined purpose, which transcends individual goals. In this context, these systems' complexity is originated by the large number of parts interacting in a non-simple way, given the properties of these parts and the laws, as well as by the wishes that govern these interactions. Also, in organizations, there is a need for additional information to understand this universe considering the already consolidated static and dynamic dimensions. With this purpose, the iStar framework was developed to capture and represent intentional and social information in two views: Strategic Dependency (SD) and Strategic Rationale (SR). This framework, however, does not offer alternatives to deal with the complexity that is inherent to modern society systems, which is related to a large number of parts interacting, when modeled from their views. The problem is present in monolithic languages because they do not consist of building blocks, such as subprocesses or modules. Despite this problem, the iStar framework provides modeling versatility by combining goal-oriented paradigms and agents. Another positive point is the focus on intentional and social properties, thus providing expressiveness aligned with the modern society's demand, in which everything is related. Therefore, the objective of this research was to provide ways for the iStar framework to deal with the complexity presented by complex systems and, consequently, make iStar models understandable to be used, in a given context. The proposal is based on a state of the art review to create an interdependente part for the iStar models and will make the construction of views as a composition of these parts possible. To make it happen, and considering its benefits, a textual notation (SMiLe-Scalable Modular iStar Language) was conceived and applied to support the architecture within this social modeling scenario. The proposal and its artifacts were submitted to a proof of concept, and then, through adjustments, an evaluation was carried by the users through a case study. The results pointed to evidence of the possible management of iStar model and an improvement in the understanding of this model, suggesting that the proposed solution is a feasible alternative for the established objective.