Exploring vision transformers and XGBoost as deep learning ensembles for transforming carcinoma recognition
Akella Subrahmanya Narasimha Raju,
K. Venkatesh,
B. Padmaja
et al.
Abstract:Early detection of colorectal carcinoma (CRC), one of the most prevalent forms of cancer worldwide, significantly enhances the prognosis of patients. This research presents a new method for improving CRC detection using a deep learning ensemble with the Computer Aided Diagnosis (CADx). The method involves combining pre-trained convolutional neural network (CNN) models, such as ADaRDEV2I-22, DaRD-22, and ADaDR-22, using Vision Transformers (ViT) and XGBoost. The study addresses the challenges associated with im… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.