Diagnostic errors in health care are a global threat to patient safety. Researchers have traditionally focused diagnostic safety efforts on identifying errors and their causes with the goal of reducing diagnostic error rates. More recently, complementary approaches to diagnostic errors have focused on improving diagnostic performance drawn from the safety sciences. These approaches have been called Safety-II and Safety-III, which apply resilience engineering and system safety principles, respectively. This review explores the safety science paradigms and their implications for analyzing diagnostic errors, highlighting their distinct yet complementary perspectives. The integration of Safety-I, Safety-II, and Safety-III paradigms presents a promising pathway for improving diagnosis. Diagnostic researchers not yet familiar with the various approaches and potential paradigm shift in diagnostic safety research may use this review as a starting point for considering Safety-I, Safety-II, and Safety-III in their efforts to both reduce diagnostic errors and improve diagnostic performance.