2012
DOI: 10.1103/physrevlett.108.168702
|View full text |Cite
|
Sign up to set email alerts
|

Explosive First-Order Transition to Synchrony in Networked Chaotic Oscillators

Abstract: Critical phenomena in complex networks, and the emergence of dynamical abrupt transitions in the macroscopic state of the system are currently a subject of the outmost interest. We report evidence of an explosive phase synchronization in networks of chaotic units. Namely, by means of both extensive simulations of networks made up of chaotic units, and validation with an experiment of electronic circuits in a star configuration, we demonstrate the existence of a first-order transition towards synchronization of… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

4
162
0
4

Year Published

2014
2014
2022
2022

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 182 publications
(176 citation statements)
references
References 15 publications
4
162
0
4
Order By: Relevance
“…Subsequently, an explosive phenomenon was found in the dynamics of cascading failures in interdependent networks [16][17][18], in contrast to the secondorder continuous phase transition found in isolated networks. More recently, such explosive phase transitions have been reported in various systems, such as explosive synchronization due to a positive correlation between the degrees of nodes and the natural frequencies of the oscillators [19][20][21] [25][26][27].In this paper we report an explosive order-disorder phase transition in a generalized majority-vote (MV) model by incorporating the effect of individuals' inertia (called inertial MV model ). The MV model is one of the simplest nonequilibrium generalizations of the Ising model that displays a continuous order-disorder phase transition at a critical value of noise [28].…”
mentioning
confidence: 99%
See 1 more Smart Citation
“…Subsequently, an explosive phenomenon was found in the dynamics of cascading failures in interdependent networks [16][17][18], in contrast to the secondorder continuous phase transition found in isolated networks. More recently, such explosive phase transitions have been reported in various systems, such as explosive synchronization due to a positive correlation between the degrees of nodes and the natural frequencies of the oscillators [19][20][21] [25][26][27].In this paper we report an explosive order-disorder phase transition in a generalized majority-vote (MV) model by incorporating the effect of individuals' inertia (called inertial MV model ). The MV model is one of the simplest nonequilibrium generalizations of the Ising model that displays a continuous order-disorder phase transition at a critical value of noise [28].…”
mentioning
confidence: 99%
“…Subsequently, an explosive phenomenon was found in the dynamics of cascading failures in interdependent networks [16][17][18], in contrast to the secondorder continuous phase transition found in isolated networks. More recently, such explosive phase transitions have been reported in various systems, such as explosive synchronization due to a positive correlation between the degrees of nodes and the natural frequencies of the oscillators [19][20][21] or an adaptive mechanism [22], discontinuous percolation transition due to an inducing effect [23], spontaneous recovery [24], and explosive epidemic outbreak due to cooperative coinfections of multiple diseases * Electronic address: chenhshf@ahu.edu.cn † Electronic address: hzhlj@ustc.edu.cn ‡ Electronic address: Juergen.Kurths@pik-potsdam.de [25][26][27].…”
mentioning
confidence: 99%
“…[16]. Subsequently, significant attention has been paid to the further exploration of degree-frequency correlations [17][18][19][20] and in particular explosive synchronization [21][22][23][24][25][26][27][28][29][30][31][32]. While this research has augmented our understanding of explosive synchronization and its relationship with dynamical and structural correlations, in each case strong conditions are necessarily imposed on either the heterogeneity of the network, its link weights, or its initial construction to engineer first-order phase transitions.…”
Section: Introductionmentioning
confidence: 99%
“…Обычно в сложных сетях наблюдается плавный переход от асинхронной динамики к синхронизации по мере увеличения параметра связи между узлами сети [6,9]. В то же время переход иного рода (фазовый переход первого рода), называемый взрывной синхронизацией, когда сеть не проходит плавно промежуточные частично синхронизованные состояния, а резко переходит скачком из асинхронного состояния в полностью синхронный режим, также наблюдается в динамике сложных сетей [10,11]. Известно, что возникновение взрывной синхронизации возможно в сетях с различным типом топологии связей.…”
Section: поступило в редакцию 5 июня 2017 гunclassified
“…Важно отметить, что, несмотря на то что наиболее популярной моделью для изучения взрывной синхронизации являются сети ос-цилляторов Курамото [18,19], спонтанное, мгновенно возникающее изменение в динамике сети осцилляторов, приводящее к резкому разрушению/установлению синхронного режима, наблюдается также и для других типов осцилляторов, когда они являются структурными элементами сложных сетей, например для кусочно-линейных систем Ресслера [10] или обобщенных осцилляторов Курамото [20]. Иными словами, резкий переход от синхронного состояния осцилляторов сети со сложной топологией межэлементных связей к асинхронной динамике (и наоборот) представляет собой универсальное явление, возникающее при определенных условиях в сложных сетях с различными узловыми элементами и разными типами топологии связей.…”
Section: поступило в редакцию 5 июня 2017 гunclassified