The features of animal population dynamics, for instance, flocking and migration, are often synchronized for survival under large-scale climate change or perceived threats. These coherent phenomena have been explained using synchronization models. However, such models do not take into account asynchronous and adaptive updating of an individual's status at each time. Here, we modify the Kuramoto model slightly by classifying oscillators as leaders or followers, according to their angular velocity at each time, where individuals interact asymmetrically according to their leader/follower status. As the angular velocities of the oscillators are updated, the leader and follower status may also be reassigned. Owing to this adaptive dynamics, oscillators may cooperate by taking turns acting as a leader or follower. This may result in intriguing patterns of synchronization transitions, including hybrid phase transitions, and produce the leader-follower switching pattern observed in bird migration patterns.