Exponential decay for the semilinear wave equation with localized Kelvin-Voight damping
Maria Rosario Astudillo Rojas,
Marcelo M. Cavalcanti,
Wellington J. Correa
et al.
Abstract:In the present paper, we are concerned with the semilinear viscoelastic wave equation subject to a locally distributed dissipative effect of Kelvin-Voigt type, posed on a bounded domain with smooth boundary. We begin with an auxiliary problem and we show that its solution decays exponentially in the weak phase space. The method of proof combines an observability inequality and unique continuation properties. Then, passing to the limit, we recover the original model and prove its global existence as well as the… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.