A liquid chromatography tandem mass spectrometry method for the analysis of ten kinase inhibitors (afatinib, axitinib, bosutinib, cabozantinib, dabrafenib, lenvatinib, nilotinib, osimertinib, ruxolitinib, and trametinib) in human serum and plasma for the application in daily clinical routine has been developed and validated according to the US Food and Drug Administration and European Medicines Agency validation guidelines for bioanalytical methods. After protein precipitation of plasma samples with acetonitrile, chromatographic separation was performed at ambient temperature using a Waters XBridge® Phenyl 3.5 μm (2.1 × 50 mm) column. The mobile phases consisted of water-methanol (9:1, v/v) with 10 mM ammonium bicarbonate as phase A and methanol-water (9:1, v/v) with 10 mM ammonium bicarbonate as phase B. Gradient elution was applied at a flow rate of 400 μL/min. Analytes were detected and quantified using multiple reaction monitoring in electrospray ionization positive mode. Stable isotopically labeled compounds of each kinase inhibitor were used as internal standards. The acquisition time was 7.0 min per run. All analytes and internal standards eluted within 3.0 min. The calibration curves were linear over the range of 2–500 ng/mL for afatinib, axitinib, bosutinib, lenvatinib, ruxolitinib, and trametinib, and 6–1500 ng/mL for cabozantinib, dabrafenib, nilotinib, and osimertinib (coefficients of correlation ≥ 0.99). Validation assays for accuracy and precision, matrix effect, recovery, carryover, and stability were appropriate according to regulatory agencies. The rapid and sensitive assay ensures high throughput and was successfully applied to monitor concentrations of kinase inhibitors in patients.