The ERK1/2 pathway is involved in epithelial-mesenchymal transformation and cell cycle of tumor cells in hepatocellular carcinoma (HCC). In the present study, we investigated the involvement of ERK1/2 activation on hepatic stellate cells (HSCs). We identified ERK1/2 phosphorylation in activated HSCs of HCC samples. We found that tumor cells promoted the migration and invasion capacity of HSCs by activating ERK1/2 phosphorylation. Using high throughput transcriptome sequencing analysis, we found that ERK1/2 inhibition altered genes significantly correlated to signaling pathways involved in extracellular matrix remodeling. We screened genes and demonstrated that the ERK1/2 inhibition-related gene set significantly correlated to cancer-associated fibroblast infiltration in TCGA HCC tumor samples. Moreover, inhibition of ERK1/2 suppressed tumor cell-induced enhancement of HSC migration and invasion by regulating expression of fibrosis markers FAP, FN1 and COL1A1. In a tumor cell and HSC splenic co-transplanted xenograft mouse model, inhibition of ERK1/2 suppressed liver tumor formation by downregulating fibrosis, indicating ERK1/2 inhibition suppresses tumor-stromal interactions in vivo. Taken together, our data indicate that inhibition of ERK1/2 in tumor-associated HSCs suppresses tumor-stromal interactions and progression. Furthermore, inhibition of ERK1/2 may be a potential target for HCC treatment.