Background
Sialic acid–binding immunoglobulin-like lectin (Siglec)-F is a proapoptotic receptor on mouse eosinophils, but little is known about its natural tissue ligand.
Objective
We previously reported that the St3gal3 gene product α2,3 sialyltransferase (ST3Gal-III) is required for constitutive Siglec-F lung ligand synthesis. We therefore hypothesized that attenuation of ST3Gal-III will decrease Siglec-F ligand levels and enhance allergic eosinophilic airway inflammation.
Methods
C57BL/6 wild-type mice and St3gal3 heterozygous or homozygous deficient (St3gal3+/− and St3gal3−/−) mice were used. Eosinophilic airway inflammation was induced through sensitization to ovalbumin (OVA) and repeated airway OVA challenge. Siglec-F human IgG1 fusion protein (Siglec-F-Fc) was used to detect Siglec-F ligands. Lung tissue and bronchoalveolar lavage fluid (BALF) were analyzed for inflammation, as well as various cytokines and chemokines. Serum was analyzed for allergen-specific immunoglobulin levels.
Results
Western blotting with Siglec-F-Fc detected approximately 500-kDa and approximately 200-kDa candidate Siglec-F ligands that were less abundant in St3gal3+/− lung extracts and nearly absent in St3gal3−/− lung extracts. After OVA sensitization and challenge, Siglec-F ligands were increased in wild-type mouse lungs but less so in St3gal3 mutants, whereas peribronchial and BALF eosinophil numbers were greater in the mutants, with the following rank order: St3gal3−/− ≥ St3gal3+/− > wild-type mice. Levels of various cytokines and chemokines in BALF were not significantly different among these 3 types of mice, although OVA-specific serum IgG1 levels were increased in St3gal3−/− mice.
Conclusions
After OVA sensitization and challenge, St3gal3+/− and St3gal3−/− mice have more intense allergic eosinophilic airway inflammation and less sialylated Siglec-F ligands in their airways. One possible explanation for these findings is that levels of sialylated airway ligands for Siglec-F might be diminished in mice with attenuated levels of ST3Gal-III, resulting in a reduction in a natural proapoptotic pathway for controlling airway eosinophilia.