BackgroundNext Generation Sequencing (NGS) of whole exomes or genomes is increasingly being used in human genetic research and diagnostics. Sharing NGS data with third parties can help physicians and researchers to identify causative or predisposing mutations for a specific sample of interest more efficiently. In many cases, however, the exchange of such data may collide with data privacy regulations. GrabBlur is a newly developed tool to aggregate and share NGS-derived single nucleotide variant (SNV) data in a public database, keeping individual samples unidentifiable. In contrast to other currently existing SNV databases, GrabBlur includes phenotypic information and contact details of the submitter of a given database entry. By means of GrabBlur human geneticists can securely and easily share SNV data from resequencing projects. GrabBlur can ease the interpretation of SNV data by offering basic annotations, genotype frequencies and in particular phenotypic information - given that this information was shared - for the SNV of interest.Tool descriptionGrabBlur facilitates the combination of phenotypic and NGS data (VCF files) via a local interface or command line operations. Data submissions may include HPO (Human Phenotype Ontology) terms, other trait descriptions, NGS technology information and the identity of the submitter. Most of this information is optional and its provision at the discretion of the submitter. Upon initial intake, GrabBlur merges and aggregates all sample-specific data. If a certain SNV is rare, the sample-specific information is replaced with the submitter identity. Generally, all data in GrabBlur are highly aggregated so that they can be shared with others while ensuring maximum privacy. Thus, it is impossible to reconstruct complete exomes or genomes from the database or to re-identify single individuals. After the individual information has been sufficiently "blurred", the data can be uploaded into a publicly accessible domain where aggregated genotypes are provided alongside phenotypic information. A web interface allows querying the database and the extraction of gene-wise SNV information. If an interesting SNV is found, the interrogator can get in contact with the submitter to exchange further information on the carrier and clarify, for example, whether the latter's phenotype matches with phenotype of their own patient.