Heterodimers of glycoproteins H (gH) and L (gL) comprise a basal element of the viral membrane fusion machinery conserved across herpesviruses. In human cytomegalovirus (HCMV), a glycoprotein encoded by UL116 noncovalently assembles onto gH at a position similar to that occupied by gL, forming a heterodimer that is incorporated into virions. However, physiological roles for UL116 or its complex with gH remain to be identified. Here, we show that UL116 promotes the expression of gH/gL complexes and is required for the efficient production of infectious cell-free virions. UL116-null mutants show a 10-fold defect in production of infectious cell-free virions from infected fibroblasts and epithelial cells. This defect is accompanied by reduced expression of the two disulfide-linked gH/gL complexes that play crucial roles in viral entry: the heterotrimer of gH/gL with glycoprotein O (gO) and the pentameric complex of gH/gL with UL128, UL130, and UL131. Furthermore, gH/UL116 complexes comprise a substantial constituent of virions since an abundant gH species not covalently linked to other glycoproteins, which has long been observed in the literature, is readily detected from wild-type but not UL116-null virions.Interestingly, UL116 co-immunoprecipitates with UL148, a viral ER resident glycoprotein previously shown to attenuate ER-associated degradation (ERAD) of gO, and we observe elevated levels of UL116 in UL148-null virions.Collectively, our findings suggest that UL116 may serve as a chaperone for gH to support the assembly, maturation, and incorporation of gH/gL complexes into virions.IMPORTANCEHCMV is a betaherpesvirus that causes dangerous opportunistic infections in immunocompromised patients, as well as in the immune-naive fetus and preterm infants. The potential of the virus to enter new host cells is governed in large part by two alternative viral glycoprotein H (gH) / glycoprotein L (gL) complexes that play important roles in entry: gH/gL/gO and gH/gL/UL128-131. A recently identified virion gH complex, comprised of gH bound to UL116, adds a new layer of complexity to the mechanisms that contribute to HCMV infectivity. Here, we show that UL116 promotes the expression of gH/gL complexes, and that UL116 interacts with the viral ER-resident glycoprotein UL148, a factor that supports the expression of gH/gL/gO. Overall, our results suggest that UL116 is a chaperone for gH. These findings have important implications for understanding of HCMV cell tropism as well as for the development of vaccines against the virus.