SummaryThrough decades of research it has been established that some chromatin-modifying proteins can repress transcription, and thus are generally termed 'repressors'. Although classic repressors undoubtedly silence transcription, genome-wide studies have shown that many repressors are associated with actively transcribed loci and that this is a widespread phenomenon. Here, we review the evidence for the presence of repressors at actively transcribed regions and assess what roles they might be playing. We propose that the modulation of expression levels by chromatin-modifying, co-repressor complexes provides transcriptional fine-tuning that drives development.Key words: NuRD, Chromatin, co-repressor, Deacetylase, Histone, Transcription
IntroductionEvery major developmental process may be regarded as being driven by changes in gene expression patterns. It is crucial that such changes, either throughout development or in response to environmental stimuli, are tightly regulated. For any given cell type, distinct transcriptional programmes must be established whereby certain genes are transcribed and others remain silent. At the same time, cells must remain responsive to changes in their environment or to developmental signals, for which the ability to rapidly change transcription patterns is essential.The control of gene expression programmes is inextricably linked to the local state of chromatin, the form in which DNA is packaged within the cell. DNA in eukaryotic nuclei is packaged with histone proteins into nucleosomes (Kornberg, 1974). Posttranslational modification of histone tails within the nucleosome may occur through the addition of a multitude of different chemical modifications, including acetylation, methylation and phosphorylation, at specific sites. These modifications influence gene expression patterns either by altering chromatin conformation, and thereby allowing or restricting access of transcription factors to that locus, or by changing interactions of transcription factors with the nucleosomes themselves (Berger, 2007; Kouzarides, 2007).It is generally accepted that chromatin state correlates with transcriptional state; histone acetylation, for example, has most often been associated with active transcription whereas deacetylation is associated with silencing (Bannister and Kouzarides, 1996;Strahl and Allis, 2000). It therefore follows that lysine acetyltransferases (KATs), which catalyse acetylation of lysine residues, act as transcriptional activators, and lysine deacetylases (KDACs), which remove acetyl groups from acetylated lysines, act as repressors. This correlation is supported by experiments in which chromatin modifiers were found to activate or repress transcription, often in reporter gene assays (Grunstein, 1997;Pazin and Kadonaga, 1997;Wolffe, 1997;Yang and Seto, 2007). Although such a binary model of transcription factor-mediated gene expression was very important in the early stages of understanding how these proteins work at a general level, it has proven to be too simplistic to ...