Glucocorticoids promote thymocyte apoptosis and modulate transcription of numerous regulators of thymic apoptosis. Among these, glucocorticoid-induced leucine zipper (GILZ) is strongly upregulated in the thymus. We have previously demonstrated that GILZ decreases Bcl-xL expression, activates caspase-8 and caspase-3, and augments apoptosis in mice thymocytes. To better understand the causal links between glucocorticoids, GILZ, Bcl-xL, caspase-8, and caspase-3, we analyzed the thymocytes of Bcl-xL-overexpressing transgenic mice with or without glucocorticoid stimulation
in vitro
. Overexpression of Bcl-xL inhibited the glucocorticoid-induced up-regulation of GILZ in murine thymocytes as well as the glucocorticoid-dependent activation of caspase-8 and caspase-3. By contrast, no appreciable change in caspase-9 activation was observed upon Bcl-xL overexpression. Thus, these experiments highlighted a novel thymocyte apoptotic pathway in which Bcl-xL overexpression inhibited the glucocorticoid-induced activation of caspase-8 and caspase-3, but not caspase-9, as well as the accumulation of GILZ protein. These findings, together with our previous results showing that caspase-8 protects GILZ from proteasomal degradation, suggest the presence of a glucocorticoid-induced apoptosis self-amplification loop in which GILZ decreases Bcl-xL expression with a subsequent activation of caspase-8 and caspase-3; caspase-8 activation then enhances the stability and accumulation of GILZ and ensures the unimpeded and irreversible progression of apoptosis. By contrast, inappropriate increases in Bcl-xL levels could have catastrophic effects on thymic apoptosis as it would shut down caspase-8/3 activation, diminish the expression of GILZ, and impair the fine control necessary for thymic generation of a healthy immune repertoire.