Background
Lung adenocarcinoma (LUAD) is currently the leading cause of cancer-related death worldwide. Long noncoding RNAs (lncRNAs) play key roles in tumor occurrence and development as crucial cancer regulators. The present study aimed to explore the molecular mechanism and regulatory network of Linc00511 in LUAD and to identify new potential therapeutic targets for LUAD.
Methods
Real-time quantitative polymerase chain reaction (RT–qPCR) was performed to determine the relative Linc00511 levels in LUAD tissues and cells. The proliferation, apoptosis, migration, and invasion abilities of LUAD cells were assessed by a Cell Counting Kit-8 (CCK-8) assay, a colony formation assay, flow cytometry, and a Transwell assay. Changes in hsa_miR-126-5p, hsa_miR-218-5p, and COL1A1 expression were analyzed using western blotting and RT–qPCR. Targeted binding between miR-126-5p/miR-218-5p and Linc00511 or COL1A1 was verified with a luciferase reporter system and confirmed by an RNA pulldown assay. The participation of the PI3K/AKT signaling pathway was confirmed via western blotting. Xenograft animal experiments were performed to detect the impact of Linc00511 on LUAD tumor growth in vivo.
Results
In the present work, we observed that Linc00511 was upregulated in LUAD tissues and cells. Loss/gain-of-function experiments indicated that knockdown of Linc00511 significantly inhibited LUAD cell proliferation, migration and invasion and promoted LUAD cell apoptosis, whereas overexpression of Linc00511 showed the opposite effects. In addition, we determined that Linc00511 promoted COL1A1-mediated cell proliferation and cell motility by sponging miR-126-5p and miR-218-5p. Moreover, Linc00511 activated the PI3K/AKT signaling pathway through upregulation of COL1A1. Finally, silencing of Linc00511 inhibited LUAD tumor growth in vivo.
Conclusions
Linc00511 acts as a competing endogenous RNA to regulate COL1A1 by targeting miR-126-5p and miR-218-5p, thereby promoting the proliferation and invasion of LUAD cells.