Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Connexins provide intercellular connections that allow passage of ions and small organic molecules. They clamp the cell membrane potential and cellular ion composition to that of neighboring cells. The cell membrane potential and ion composition of an energy-depleted cell could thus be maintained despite its compromised Na(+)/K(+) activity. By the same token, however, the breakdown of ion gradients in that cell imposes an additional challenge to the neighboring cells, which may jeopardize their survival. Thus, timely closure of connexins may be critically important for the survival of those cells. Energy depletion stimulates the AMP-activated protein kinase (AMPK), a serine/threonine kinase that senses energy depletion and stimulates several cellular mechanisms to enhance energy production and to limit energy utilization. The present study explored whether AMPK regulates connexin 26. To this end, cRNA encoding connexin 26 was injected into Xenopus oocytes with and without additional injection of wild-type AMPK (α1β1γ1), of the constitutively active (γR70Q)AMPK (α1β1γ1[R70Q]) or of the inactive mutant (αK45R)AMPK (α1[K45R]β1γ1). Connexin 26 activity was determined in dual-electrode voltage-clamp experiments. Moreover, connexin 26 abundance was determined in the oocyte cell membrane by chemiluminescence and confocal microscopy. As a result, connexin 26-mediated current and connexin 26 protein abundance were significantly decreased by coexpression of (γR70Q)AMPK and, to a lower extent, by wild-type AMPK but not by (αK45R)AMPK. In conclusion, AMPK is a potent regulator of connexin 26.
Connexins provide intercellular connections that allow passage of ions and small organic molecules. They clamp the cell membrane potential and cellular ion composition to that of neighboring cells. The cell membrane potential and ion composition of an energy-depleted cell could thus be maintained despite its compromised Na(+)/K(+) activity. By the same token, however, the breakdown of ion gradients in that cell imposes an additional challenge to the neighboring cells, which may jeopardize their survival. Thus, timely closure of connexins may be critically important for the survival of those cells. Energy depletion stimulates the AMP-activated protein kinase (AMPK), a serine/threonine kinase that senses energy depletion and stimulates several cellular mechanisms to enhance energy production and to limit energy utilization. The present study explored whether AMPK regulates connexin 26. To this end, cRNA encoding connexin 26 was injected into Xenopus oocytes with and without additional injection of wild-type AMPK (α1β1γ1), of the constitutively active (γR70Q)AMPK (α1β1γ1[R70Q]) or of the inactive mutant (αK45R)AMPK (α1[K45R]β1γ1). Connexin 26 activity was determined in dual-electrode voltage-clamp experiments. Moreover, connexin 26 abundance was determined in the oocyte cell membrane by chemiluminescence and confocal microscopy. As a result, connexin 26-mediated current and connexin 26 protein abundance were significantly decreased by coexpression of (γR70Q)AMPK and, to a lower extent, by wild-type AMPK but not by (αK45R)AMPK. In conclusion, AMPK is a potent regulator of connexin 26.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.