Cytochrome P450 1B1 (CYP1B1), an extrahepatic enzyme inducible by smoking, is overexpressed in many tumors and catalyzes the metabolic activation of procarcinogens such as polycyclic aromatic hydrocarbons. In human, CYP1B1 is genetically polymorphic and five common missense mutations causing amino acid substitution have been identified. In this study, we have investigated CYP1B1 haplotypes present in a Spanish population and carried out functional analyses of the corresponding enzymes in yeast using benzo [a]pyrene as a substrate. CYP1B1*1, CYP1B1*2, CYP1B1*3, CYP1B1*4, CYP1B1*6, and CYP1B1*7, encoding combinations of the Arg48Gly, Ala119Ser, Leu432Val, Asn453Ser, and Ala443Gly amino acid substitutions, were present at frequencies of 14.3%, 25.5%, 38.8%, 18.1%, 0.4%, and 2.6%, respectively. The variant CYP1B1 forms were heterologously expressed with human reductase in Saccharomyces cerevisiae and kinetic analyses of benzo[a]pyrene metabolism were carried out. CYP1B1.7, having the amino acid substitutions Arg48Gly, Ala119Ser, Leu432Val, and Ala443Gly, exhibited a significantly decreased capacity (P < 0.001) for the formation of (F)-benzo[a]pyrene-trans-7,8-dihydrodiol from benzo[a]-pyrene as indicated by lower intrinsic clearance (V max / K m ). A somewhat decreased clearance was observed for CYP1B1.4, whereas no significant differences in kinetic properties among the remaining variant enzymes were observed as compared with CYP1B1.1. Thus, genetic polymorphism in the CYP1B1 gene, as defined by the haplotypes investigated, might cause interindividual differences in susceptibility (e.g., to lung cancer induced by smoking). The results indicate the necessity to make molecular epidemiologic investigations regarding the association of the specific CYP1B1 haplotypes and cancer risk. (Cancer Res 2005; 65(12): 5105-11)