SIPA1 (signal-induced proliferation-associated protein 1) is a GTPase activation protein that can catalyze the hydrolysis of Rap1 bound GTP to GDP. Recently attention has been paid to a potential role for SIPA1 in cancer metastasis; however, the underlying mechanism of how changes in SIPA1 levels may lead to increased metastasis remains poorly understood. In this study, we showed that SIPA1 was mainly localized to the nuclei in highly invasive breast cancer tumor tissue and MDA-MB-231 cells. Knockdown of SIPA1 in MDA-MB-231 altered cell morphology and cell proliferation ability. Furthermore, this study is the first to establish that nuclear SIPA1 can interact with the integrin β1 promoter and activate its transcription; this interaction appears to be important for SIPA1-dependent MDA-MB-231 cell adhesion and invasion. We also demonstrated that the phosphorylation of FAK, Akt and the expression of MMP9, downstream signaling molecules of integrin β1, were decreased upon SIPA1 knockdown, and MDA-MB-231 cell invasion was impaired. Taken together, these results suggest nuclear SIPA1 contributes to breast cancer cell invasion through the regulation of integrin β1 signaling.