The genes encoding transmembrane glycoproteins of the cadherin family, i.e., the Ca
2+-dependent cell-cell adhesion molecules, are typically expressed in cell-type-or cell-lineage-specific patterns. One of them, vascular endothelial (VE)-cadherin, is widely considered to be specific for vascular endothelia in which it is either the sole or the predominant cadherin, often co-existing with N-cadherin. This specificity of VE-cadherin for vascular endothelial cells is important not only in blood and lymph vessel biology and medicine, but also for cell-type-based diagnoses, notably those of metastatic tumors. Surprisingly, however, we have recently noted the frequent synthesis, surface exposure, and junction assembly of VE-cadherin in certain other cells, in which this glycoprotein is clustered into adherens junctions (AJs), either alone or in combination with N-cadherin and/or cadherin-11. Such cells include mammalian astrocytes and glioma, probably mostly astrocytoma cells growing in culture, and a specific subtype of astrocytoma in situ. Moreover, VE-cadherin synthesis and AJ assembly, plus the regional clustering of such AJs in certain domains, are not clonally fixed but can appear again and again in cells of the progeny of cloned homogeneous-appearing individual cells, thus resulting in clonal cell colonies that are often heterogeneous in their cadherin junction patterns. We discuss the constitutive presence of VE-cadherin in some nonendothelial cells with respect to certain architectural features and possible physiological and pathogenic functions of the cells, and in comparison with recent reports of VE-cadherinpositive melanomas.