Myostatin is a secreted protein that normally functions as a negative regulator of muscle growth. Agents capable of blocking the myostatin signaling pathway could have important applications for treating human muscle degenerative diseases as well as for enhancing livestock production. Here we describe a potent myostatin inhibitor, a soluble form of the activin type IIB receptor (ACVR2B), which can cause dramatic increases in muscle mass (up to 60% in 2 weeks) when injected into wild-type mice. Furthermore, we show that the effect of the soluble receptor is attenuated but not eliminated in Mstn ؊/؊ mice, suggesting that at least one other ligand in addition to myostatin normally functions to limit muscle growth. Finally, we provide genetic evidence that these ligands signal through both activin type II receptors, ACVR2 and ACVR2B, to regulate muscle growth in vivo. Mice carrying a targeted mutation in the myostatin gene have muscles that are about twice the normal size as a result of a combination of muscle fiber hyperplasia and hypertrophy (2). Myostatin appears to play a similar role in other species as well; naturally occurring mutations in the myostatin gene have been shown to be responsible for the double-muscling phenotype in cattle (3-6), and recent studies have demonstrated that a human baby with approximately twice the normal muscle mass is also homozygous for a loss-of-function mutation in the MSTN gene (7). These findings have raised the possibility that agents capable of targeting the myostatin signaling pathway may be useful for increasing muscle mass for both agricultural and human therapeutic applications. In this regard, loss of myostatin signaling has been shown to have beneficial effects in mouse models of muscle degenerative (8, 9) and metabolic (10) diseases.Various myostatin-binding proteins have been identified that are capable of inhibiting myostatin activity in vitro (8,(11)(12)(13)(14)(15)(16). Two of these proteins, the JA16 neutralizing monoclonal antibody (Ab) directed against myostatin (8, 15) and a mutant form of the myostatin propeptide resistant to members of the BMP-1͞tolloid family of metalloproteases (16), have been shown to be capable of increasing muscle mass by Ϸ25% when administered to wild-type (WT) mice. To determine whether these increases in muscle growth are the maximal achievable by targeting this signaling pathway, we sought additional myostatin inhibitors that might have a broader specificity in their ability to target additional members of the TGF- superfamily. Previous studies have demonstrated that myostatin is capable of binding the two activin type II receptors, ACVR2B and, to a lesser extent, ACVR2, in transfected COS cells (11,17). Moreover, transgenic mice in which a myosin light chain promoter͞ enhancer was used to express a truncated form of ACVR2B in skeletal muscle were found to have dramatic increases in muscle mass (11). Because the activin type II receptors have been shown to be capable of binding a number of other TGF- family members in addition to ...