BackgroundDuring acute myocardial infarction, phosphorylated TnI levels, Ca2+ sensitivity and ATPase activity are decreased in the myocardium, and the subsequent elevation in Ca2+ levels activates protease I (caplain I), leading to the proteolytic degradation of troponins. Concurrently, the levels of apelin and APJ expression are increased by limiting myocardial injury.MethodsIn this prospective observational study, 100 consecutive patients with ST-elevation acute myocardial infarction were included. Patients meeting the following criteria were included in our study: (1) continuous chest pain lasting for >30 min, (2) observation of ST-segment elevation of more than 2 mm in two adjacent leads by electrocardiography (ECG), (3) increased cardiac troponin I levels, and (4) patients who underwent reperfusion therapy. We evaluated the levels of apelin-12 and troponin I on the first and seventh days after reperfusion therapy in all patients.ResultsApelin-12 was inversely correlated with troponin I levels (Spearman’s correlation = −0.40) with a p value <0.001. There was variability in the apelin values on the seventh day (Kruskal-Wallis test) based on major adverse cardiac events (MACE) (p = 0.012). Using ROC curve analyses, a cut-off value of >2.2 for the association of apelin with MACE was determined, and the AUC was 0.71 (95% CI, 0.58–0.84). Survival analysis using the Kaplan-Meier method showed a lower rate of MACE among patients with apelin levels >2.2 (p = 0.002), and the ROC curve analysis showed a statistically significant difference in the area under the curve (p = 0.004).ConclusionThe influence of apelin levels on troponin levels in the acute phase of STEMI is inversely correlated, whereas in the non-acute phase, low apelin values were associated with a high rate of MACE.