Abstract. Nicotinic stimulation and high K § -ization of chromaffin cells cause disassembly of cortical filamentous actin networks and redistribution of scinderin, a Ca2+-dependent actin filament-severing protein. These events which are Ca2+-dependent precede exocytosis. Activation of scinderin by Ca ~ § may cause disassembly of actin filaments leaving cortical areas of low cytoplasmic viscosity which are the sites of exocytosis (Vitale, M. L., A. Rodriguez Del Castillo, L. Tchakarov, and J.-M. Trifar6. 1991. J. Cell. Biol. 113:1057-1067. It has been suggested that protein kinase C (PKC) regulates secretion. Therefore, the possibility that PKC activation might modulate scinderin redistribution was investigated. Here we report that PMA, a PKC activator, caused scinderin redistribution, although with a slower onset than that induced by nicotine. PMA effects were independent of either extra or intracellular Ca 2 § as indicated by measurements of Ca 2 § transients, and they were likely to be mediated through direct activation of PKC because inhibitors of the enzyme completely blocked the response to PMA. Scinderin was not phosphorylated by the kinase and further experiments using the Na+/H § antiport inhibitors and intracellular pH determinations, demonstrated that PKC-mediated scinderin redistribution was a consequence of an increase in intracellular pH. Moreover, it was shown that scinderin binds to phosphatidylserine and phosphatidylinositol 4,5-biphosphate liposomes in a Ca2 § manner, an effect which was modulated by the pH. The results suggest that under resting conditions, cortical scinderin is bound to plasma membrane phospholipids. The results also show that during nicotinic receptor stimulation both a rise in intracellular Ca 2 § and pH are observed. The rise in intracellular pH might be the result of the translocation and activation of PKC produced by Ca ~ § entry. This also would explain why scinderin redistribution induced by nicotine is partially (26-40%) inhibited by inhibitors of either PKC or the Na+/H § antiport. In view of these findings, a model which can explain how scinderin redistribution and activity may be regulated by pH and Ca 2 § in resting and stimulated conditions is proposed.